Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Min Wang, Qianqian Zou, Xueqi Dong, Nengneng Xu, Rong Shao, Jianfei Ding, Yidong Zhang, Jinli Qiao. Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO2 conversion. Green Energy&Environment, 2023, 8(3): 893-903. doi: 10.1016/j.gee.2021.12.003
Citation: Min Wang, Qianqian Zou, Xueqi Dong, Nengneng Xu, Rong Shao, Jianfei Ding, Yidong Zhang, Jinli Qiao. Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO2 conversion. Green Energy&Environment, 2023, 8(3): 893-903. doi: 10.1016/j.gee.2021.12.003

Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO2 conversion

doi: 10.1016/j.gee.2021.12.003
  • Development of high-performance hydroxide-conductive membranes is a focus research subject owing to promising applications in electrochemical reduction of CO2 (eCO2RR). However, few satisfactory membranes have been developed to maximize the performance of CO2 electrolyzers, despite its role as the core in regulating ion transport and preventing product crossover or fuel loss. Herein, we report the synthesis of alkaline anion-exchange membranes fabricated by poly (vinyl-alcohol) (PVA) and poly [(3-methyl-1-vinylimidazoliummethylsulfate)-co-(1-vinylpyrrolidone)] (PQ44) for use in CO2 electrolysis. Owing to the unique imidazolium ring structure coupled with a three-dimensional semi-interpenetrating porous internal architecture, the PVA/PQ44-OH- membranes provide a high hydroxide conductivity (21.47 mS cm-1), preferable mechanical property and thermal stability. In particular, the eCO2RR used PVA/PQ44-OH- as electrolyte membrane realized a charming Faradaic efficiency (88%) and partial current density (29 mA cm-2) at -0.96 VRHE and, delivered the excellent durability over 20 h electrolysis in 0.5 mol L-1 KHCO3 electrolyte. Notably, it can even enable an ultrahigh current density beyond 100 mA cm-2 at -1.11 VRHE when the electrolyte was KOH instead, and produced the FE of 85% at a low potential of -0.81 VRHE, superior to both commercial alkaline A201 and acidic Nafion117 membrane.

     

  • loading
  • [1]
    R. Daiyan, W.H. Saputera, H. Masood, J. Leverett, X. Lu, R. Amal, Adv. Energy Mater. 10 (2020) 1902106.
    [2]
    R.B. Song, W. Zhu, J. Fu, Y. Chen, L. Liu, J.R. Zhang, Y. Lin, J.J. Zhu, Adv. Mater 32 (2020) e1903796.
    [3]
    S. Subramanian, V.I. Chukwuike, M.A. Kulandainathan, R.C. Barik, ChemElectroChem 7 (2020) 2265-2273.
    [4]
    M. Bevilacqua, J. Filippi, H.A. Miller, F. Vizza, Energy Technol. 3 (2015) 197-210.
    [5]
    W. Ye, X. Guo, T. Ma, Chem. Eng. J. 414 (2021) 128825.
    [6]
    A.S. Agarwal, Y. Zhai, D. Hill, N. Sridhar, ChemSusChem 4 (2011) 1301-1310.
    [7]
    X. Zheng, Z. Cai, Y. Li, IEEE Commun. Mag. 56 (2018) 55-61.
    [8]
    M. Wang, N. Preston, N. Xu, Y. Wei, Y. Liu, J. Qiao, ACS Appl. Mater. Interfaces 11 (2019) 6881-6889.
    [9]
    R. Cook, R. Macduff, A. Sammells, J. Electrochem. Soc. 135 (1988) 1470-1471.
    [10]
    T. Lei, X. Zhang, J. Jung, Y. Cai, X. Hou, Q. Zhang, J. Qiao, Catal. Today 318 (2018) 32-38.
    [11]
    S. Komatsu, M. Tanaka, A. Okumura, A. Kungi, Electrochim. Acta 40 (1995) 745-753.
    [12]
    Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Electrochim. Acta 48 (2003) 2651-2657.
    [13]
    B. Zhang, Y. Cao, S. Jiang, Z. Li, G. He, H. Wu, J. Membr. Sci. 518 (2016) 243-253.
    [14]
    W. Wang, S. Gong, J. Liu, Y. Ge, J. Wang, X. Lv, J. Colloid Interface Sci. 595 (2021) 159-167.
    [15]
    S.R. Narayanan, B. Haines, J. Soler, T.I. Valdez, J. Electrochem. Soc. 158 (2011) A167.
    [16]
    H. Pan, C.J. Barile, Energy Environ. Sci. 13 (2020) 3567-3578.
    [17]
    A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullon, A. Saez, V. Montiel, A. Irabien, J. CO2 Util. 18 (2017) 222-228.
    [18]
    H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, ECS Trans 77 (2017) 1425-1431.
    [19]
    Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong, M. Huai, L. Xiao, G. Wang, J. Lu, L. Zhuang, Energy Environ. Sci. 12 (2019) 2455-2462.
    [20]
    L. Peng, Y. Wang, Y. Wang, N. Xu, W. Lou, P. Liu, D. Cai, H. Huang, J. Qiao, Appl. Catal. B.Environ. 288 (2021) 120003.
    [21]
    J. O'connor, Y. Lang, J. Chao, H. Cao, L. Collins, B.J. Rodriguez, P. Dockery, D.P. Finn, W. Wang, A. Pandit, Small 10 (2014) 469-473.
    [22]
    M. Liu, B. Han, Green Energy Environ. 5 (2020) 249-250.
    [23]
    Y. Zhang, J. Fang, Y. Wu, H. Xu, X. Chi, W. Li, Y. Yang, G. Yan, Y. Zhuang, J. Colloid Interface Sci. 381 (2012) 59-66.
    [24]
    Q.G. Zhang, Q.L. Liu, A.M. Zhu, Y. Xiong, L. Ren, J. Membr. Sci. 335 (2009) 68-75.
    [25]
    R.M. Lilleby Helberg, Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 5 (2020) 59-68.
    [26]
    L. Lebrun, N. Follain, M. Metayer, Electrochim. Acta 50 (2004) 985-993.
    [27]
    G. Merle, M. Wessling, K. Nijmeijer, J. Membr. Sci 377 (2011) 1-35.
    [28]
    T. Zhou, J. Zhang, J. Qiao, L. Liu, G. Jiang, J. Zhang, Y. Liu, J. Power Sources 227 (2013) 291-299.
    [29]
    B. Lin, L. Qiu, J. Lu, F. Yan, Chem. Mater. 22 (2010) 6718-6725.
    [30]
    M. Guo, J. Fang, H. Xu, W. Li, X. Lu, C. Lan, K. Li, J. Membr. Sci. 362 (2010) 97-104.
    [31]
    J. Zhang, T. Zhou, J. Qiao, Y. Liu, J. Zhang, Electrochim. Acta. 111 (2013) 351-358.
    [32]
    T. Zhou, B. Ao, Y. Wei, S. Chen, K. Lian, J. Qiao, Solid State Ion. 308 (2017) 112-120.
    [33]
    J. Qiao, T. Hamaya, T. Okada, Polymer 46 (2005) 10809-10816.
    [34]
    J. Qiao, J. Fu, L. Liu, Y. Liu, J. Sheng, Int. J. Hydrogen Energy 37 (2012) 4580-4589.
    [35]
    J. Qiao, J. Fu, R. Lin, J. Ma, J. Liu, Polymer 51 (2010) 4850-4859.
    [36]
    G.-J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, H.-S. Choi, Korean J Chem Eng. 32 (2015) 1896-1901.
    [37]
    S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Adv. Energy Mater. 4 (2014) 1301655.
    [38]
    D. Zhao, C. Chen, Q. Zhang, W. Chen, S. Liu, Q. Wang, Y. Liu, J. Li, H. Yu, Adv. Energy Mater. 7 (2017) 1700739.
    [39]
    Y. Yuan, C. Shen, J. Chen, X. Ren, Ionics 24 (2017) 1173-1180.
    [40]
    J.-H. Kim, Y.M. Lee, J. Membr. Sci. 193 (2001) 209-225.
    [41]
    D. Kim, J. Membr. Sci. 240 (2004) 37-48.
    [42]
    C. Shao, H.-Y. Kim, J. Gong, B. Ding, D.-R. Lee, S.-J. Park, Mater. Lett. 57 (2003) 1579-1584.
    [43]
    N. Vassal, E. Salmon, J.-F. Fauvarque, Electrochim. Acta. 45 (2000) 1527-1532.
    [44]
    L. Dai, J. Nan, X. Tu, L. He, B. Wei, C. Xu, Y. Xu, S. Li, H. Wang, J. Zhang, Cellulose 26 (2019) 6713-6724.
    [45]
    J. Qiao, J. Zhang, J. Zhang, J. Power Sources 237 (2013) 1-4.
    [46]
    G. Das, B.K. Deka, S.H. Lee, Y.-B. Park, Y.S. Yoon, Macromol Res. 23 (2015) 256-264.
    [47]
    J. Qiao, J. Fu, L. Liu, J. Zhang, J. Xie, G. Li, Solid State Ion. 214 (2012) 6-12.
    [48]
    A. Svang-Ariyaskul, R.Y.M. Huang, P.L. Douglas, R. Pal, X. Feng, P. Chen, L. Liu, J. Membr. Sci. 280 (2006) 815-823.
    [49]
    J. Qiao, N. Yoshimoto, M. Morita, J. Power Sources 105 (2002) 45-51.
    [50]
    J. Zhang, X. Li, X. Wang, B. Qiu, Z. Li, J. Ding, RSC Adv. 6 (2016) 98598-98605.
    [51]
    M.R. Hibbs, C.H. Fujimoto, C.J. Cornelius, Macromolecules 42 (2009) 8316-8321.
    [52]
    Q. Zhang, Q. Zhang, J. Wang, S. Zhang, S. Li, Polymer 51 (2010) 5407-5416.
    [53]
    C.G. Morandi, R. Peach, H.M. Krieg, J. Kerres, J. Membr. Sci. 476 (2015) 256-263.
    [54]
    F. Song, Y. Fu, Y. Gao, J. Li, J. Qiao, X.-D. Zhou, Y. Liu, Electrochim. Acta. 177 (2015) 137-144.
    [55]
    Y. Ye, Y.A. Elabd, Macromolecules 44 (2011) 8494-8503.
    [56]
    J. Liu, L. Peng, Y. Zhou, L. Lv, J. Fu, J. Lin, D. Guay, J. Qiao, ACS Sustain. Chem. Eng. 7 (2019) 15739-15746.
    [57]
    L.M. Aeshala, A. Verma, Macromol Symp. 357 (2015) 79-85.
    [58]
    J.J. Kaczur, H. Yang, Z. Liu, S.D. Sajjad, R.I. Masel, Front. Chem. 6 (2018) 263.
    [59]
    L. Peng, Y. Wang, I. Masood, B. Zhou, Y. Wang, J. Lin, J. Qiao, F.-Y. Zhang, Appl. Catal. B.Environ. 264 (2020) 118447.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return