Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Shuainan Guo, Mingquan Liu, Haoyi Yang, Xin Feng, Ying Bai, Chuan Wu. CoSnO3/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries. Green Energy&Environment, 2023, 8(3): 883-892. doi: 10.1016/j.gee.2021.11.009
Citation: Shuainan Guo, Mingquan Liu, Haoyi Yang, Xin Feng, Ying Bai, Chuan Wu. CoSnO3/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries. Green Energy&Environment, 2023, 8(3): 883-892. doi: 10.1016/j.gee.2021.11.009

CoSnO3/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries

doi: 10.1016/j.gee.2021.11.009
  • Rechargeable aluminum batteries (RABs) are attractive cadidates for next-generation energy storage and conversion, due to the low cost and high safety of Al resources, and high capacity of metal Al based on the three-electrons reaction mechanism. However, the development of RABs is greatly limited, because of the lack of advanced cathode materials, and their complicated and unclear reaction mechanisms. Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials. In this work, we synthesize porous CoSnO3/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time. The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion. The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability. In addition to this, abundant oxygen vacancies promote the adsorption affinity of cathodes, which improves storage capacity. As a result, the CoSnO3/C cathodes display an excellent reversible capacity of 292.1 mAh g-1 at 0.1 A g-1, a good rate performance with 109 mAh g-1 that is maintained even at 1 A g-1 and the provided stable cycling behavior for 500 cycles. Besides, a mechanism of intercalation of Al3+ within CoSnO3/C cathode is proposed for the electrochemical process. Overall, this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs.

     

  • loading
  • [1]
    F. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 31 (2019) 1806510.
    [2]
    K. Zhang, F. Wu, K. Zhang, S. Weng, X. Wang, M. Gao,Y. Sun, D. Cao, Y. Bai, H. Xu, X. Wang, C. Wu, Energy Storage Mater. 41 (2021) 485-494.
    [3]
    X. Shen, X. Zhang, F. Ding, J. Huang, R. Xu, X. Chen, C. Yan, F. Su, C. Chen, X. Liu, Q. Zhang, Energy Material Advances 2021, 2021, 1205324.
    [4]
    G. Chen, Y. Bai, Y. Gao, Z. Wang, K. Zhang, Q. Ni, F. Wu, H. Xu, C. Wu, ACS Appl. Mater. Interfaces 11 (2019) 43252-43260.
    [5]
    Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen, C.C. Li, Energy Storage Mater. 20 (2019) 118-138
    [6]
    Q. Ni, H. Jiang, S. Sandstrom, Y. Bai, H. Ren, X. Wu, Q. Guo, D. Yu, C. Wu, X. Ji, Adv. Funct. Mater. 30 (2020) 2003511.
    [7]
    J. Park, Z.-L. Xu, G. Yoon, S.K. Park, J. Wang, H. Hyun, H. Park, J. Lim, Y.-J. Ko, Y.S. Yun, K. Kang, Adv. Mater. 32 (2020) 1904411.
    [8]
    L. Zheng, H. Yang, Y. Bai, C. Wu, J. Energy Chem. 60 (2021) 229-232.
    [9]
    H. Wang, X. Bi, Y. Bai, C. Wu, S. Gu, S. Chen, F. Wu, K. Amine, J. Lu, Adv. Energy Mater. 7 (2017) 1602720.
    [10]
    N. Zhu, F. Wu, Z. Wang, L. Ling, H. Yang, Y. Gao, S. Guo, L. Suo, H. Li, H. Xu, Y. Bai, C. Wu, J. Energy Chem. 51 (2020) 72-80.
    [11]
    C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, L. Yin, Energy Environ. Sci. 11 (2018) 3201-3211.
    [12]
    S. Guo, H. Yang, M. Liu, X. Feng, Y. Gao, Y. Bai, C. Wu, ACS Appl. Mater. Interfaces 13 (2021) 22549-22558.
    [13]
    T. Cai, L. Zhao, H. Hu, T. Li, X. Li, S. Guo, Y. Li, Q. Xue, W. Xing, Z. Yan, L. Wang, Energy Environ. Sci. 11 (2018) 2341-2347.
    [14]
    S. Guo, H. Yang, M. Liu, X. Feng, H. Xu, Y. Bai, C. Wu, ACS Applied Energy Materials. 4 (2021) 7064-7072.
    [15]
    H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, K. Amine, ACS Appl. Mater. Interfaces 7 (2015) 80-84.
    [16]
    S. Wang, S. Jiao, J. Wang, H.-S. Chen, D. Tian, H. Lei, D.-N. Fang, ACS Nano 11 (2017) 469-477.
    [17]
    H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, Angew. Chem. Int. Ed. 57 (2018) 1898-1902.
    [18]
    W. Guan, L. Wang, H. Lei, J. Tu, S. Jiao, Nanoscale 11 (2019) 16437-16444.
    [19]
    Y. Liao, D. Wang, X. Li, S. Tian, H. Hu, D. Kong, T. Cai, P. Dai, H. Ren, H. Hu, Y. Li, Q. Xue, Z. Yan, X. Gao, W. Xing, J. Power Sources 477 (2020) 228702.
    [20]
    Y. Gao, H. Yang, X. Wang, Y. Bai, N. Zhu, S. Guo, L. Suo, H. Li, H. Xu, C. Wu, ChemSusChem 13 (2020) 732-740.
    [21]
    X. Zhang, G. Zhang, S. Wang, S. Li, S. Jiao, J. Mater. Chem. A 6 (2018) 3084-3090.
    [22]
    Z. Li, J. Li, F. Kang, Electrochim. Acta 298 (2019) 288-296.
    [23]
    T. He, J. Feng, J. Ru, Y. Feng, R. Lian, J. Yang, ACS Nano 13 (2019) 830-838.
    [24]
    S. Dou, X. Li, L. Fan, D. Xiong, H. Sari, B. Yan, W. Liu, J. Li, J. Xu, D. Li, X. Sun, Electrochim. Acta, 316 (2019) 236-247.
    [25]
    J. Huang, Y. Ma, Q. Xie, H. Zheng, J. Yang, L. Wang, D.-L. Peng, small 14 (2018) 1703513.
    [26]
    Z. Wang, Z. Wang, W. Liu, W. Xiao, X.W. Lou, Energy Environ. Sci. 6 (2013) 87-91.
    [27]
    Z. Wang, X. Wang, Y. Bai, H. Yang, Y. Li, S. Guo, G. Chen, Y. Li, H. Xu, C. Wu, ACS Appl. Mater. Interfaces 12 (2020) 2481-2489.
    [28]
    K. Yu, H. Zhao, X. Wang, M. Zhang, R. Dong, Y. Li, Y. Bai, H. Xu, C. Wu, ACS Appl. Mater. Interfaces 12 (2020) 10544-10553.
    [29]
    A. Sumboja, B. Prakoso, Y. Ma, F. R. Irwan, J. J. Hutani, A. Mulyadewi, M. A. A. Mahbub, Y. Zong, Z. Liu, Energy Material Advances 2021, 2021, 7386210.
    [30]
    L. Xing, K.A. Owusu, X. Liu, J. Meng, K. Wang, Q. An, L. Mai, Nano Energy 79 (2021) 105384.
    [31]
    Z. Zhang, B. Jia, L. Liu, Y. Zhao, H. Wu, M. Qin, K. Han, W.A. Wang, K. Xi, L. Zhang, G. Qi, X. Qu, R.V. Kumar, ACS Nano 13 (2019) 11363-11371.
    [32]
    W. Feng, Y. Cui, W. Liu, H. Wang, Y. Zhang, Y. Du, S. Liu, H. Wang, X. Gao, T. Wang, ACS Nano 14 (2020) 4938-4949.
    [33]
    K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan, B. Wei, Small 13 (2017) 1701471.
    [34]
    Y. Fu, L. Li, S. Ye, P. Yang, P. Liao, X. Ren, C. He, Q. Zhang, J. Liu, J. Mater. Chem. A 9 (2021) 453-462.
    [35]
    Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Adv. Mater 30 (2018) 1802396.
    [36]
    Q. Ni, R. Dong, Y. Bai, Z. Wang, H. Ren, S. Sean, F. Wu, H. Xu, C. Wu, Energy Storage Mater. 25 (2020) 903-911.
    [37]
    T. Meng, B. Li, L. Hu, H. Yang, W. Fan, S. Zhang, P. Liu, M. Li, F.L. Gu, Y. Tong, Small Methods 3 (2019) 1900185.
    [38]
    J. Hao, J. Zhang, G. Xia, Y. Liu, Y. Zheng, W. Zhang, Y. Tang, W.K. Pang, Z. Guo, ACS Nano 12 (2018) 10430-10438.
    [39]
    W. Yang, H. Lu, Y. Cao, P. Jing, X. Hu, H. Yu, Ionics 26 (2020) 3405-3413.
    [40]
    H. Lu, Y. Wan, T. Wang, R. Jin, P. Ding, R. Wang, Y. Wang, C. Teng, L. Li, X. Wang, D. Zhou, G. Xue, J. Mater. Chem. A 7 (2019) 7213-7220.
    [41]
    S. Wang, K.V. Kravchyk, S. Pigeot-Remy, W. Tang, F. Krumeich, M. Worle, M.I. Bodnarchuk, S. Cassaignon, O. Durupthy, S. Zhao, C. Sanchez, M.V. Kovalenko, ACS Applied Nano Materials 2 (2019) 6428-6435.
    [42]
    X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian, S. Jiao, ChemSusChem, 11 (2018) 709-715.
    [43]
    N. Jayaprakash, S.K. Das, L.A. Archer, The Rechargeable Aluminum-Ion Battery, Chem. Commun., 47 (2011) 12610-12612.
    [44]
    S.K. Das, T. Palaniselvam, P. Adelhelm, Solid State Ionics 340 (2019) 115017.
    [45]
    J. Liu, Z. Li, X. Huo, J. Li, J. Power Sources 422 (2019) 49-56.
    [46]
    M. Chiku, H. Takeda, S. Matsumura, E. Higuchi, H. Inoue, ACS Appl. Mater. Interfaces 7 (2015) 24385-24389.
    [47]
    W. Wang, B. Jiang, W. Xiong, H. Sun, Z. Lin, L. Hu, J. Tu, J. Hou, H. Zhu, S. Jiao, Sci. Rep. 3 (2013) 3383.
    [48]
    J. Jiang, H. Li, J. Huang, K. Li, J. Zeng, Y. Yang, J. Li, Y. Wang, J. Wang, J. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 28486-28494.
    [49]
    X. Xiao, M. Wang, J. Tu, Y. Luo, S. Jiao, ACS Sustain. Chem. Eng. 7 (2019) 16200-16208.
    [50]
    J. Tu, H. Lei, Z. Yu, S. Jiao, Chem. Commun. 54 (2018) 1343-1346.
    [51]
    P. Almodovar, D.A. Giraldo, J. Chancon, I. Alvarez-Serrano, M.L. Lopez, ChemElectroChem 7 (2020) 2102-2106.
    [52]
    J. Tu, M. Wang, Y. Luo, S. Jiao, ACS Sustain. Chem. Eng. 8 (2020) 2416-2422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (188) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return