Volume 8 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
Ping Wang, Xiaoling Mou, Yong Li, Wenjie Shen. Green rusts-derived iron oxide nanostructures catalyze NO reduction by CO. Green Energy&Environment, 2023, 8(2): 499-508. doi: 10.1016/j.gee.2021.06.002
Citation: Ping Wang, Xiaoling Mou, Yong Li, Wenjie Shen. Green rusts-derived iron oxide nanostructures catalyze NO reduction by CO. Green Energy&Environment, 2023, 8(2): 499-508. doi: 10.1016/j.gee.2021.06.002

Green rusts-derived iron oxide nanostructures catalyze NO reduction by CO

doi: 10.1016/j.gee.2021.06.002
  • Green rusts with brucite-like layers of hydroxide intercalated with anions constitute a family of diverse precursors for the synthesis of iron oxides via dehydration, but precise structural control of the resulting oxides with respect to the size and shape at the nanometer level remains challenging due to the easy oxidation of the ferrous species. Herein, we report a new synthetic strategy for the facile preparation of fibrous-like green rusts by using appropriate balancing anions (CO32- and SO42-) in ethylene glycol to regulate the morphology. Depending on the type of the intercalating anion, the green rusts were converted into hematite with fibrous-or plate-like shapes upon thermal activation. When evaluated in the reaction of NO reduction by CO, these iron oxides showed a prominent shape-dependent catalytic behavior. The fibrous-like Fe2O3 was much more catalytically active and structurally robust than the plate-like analogue. Combined spectroscopic and microscopic characterizations on the nanostructured iron oxides revealed that the superior performance of the fibrous-like Fe2O3 stemmed from a facile Fe2O3/Fe3O4 redox cycle and a higher density of active sites for NO activation.

     

  • • Fibrous-like green rusts with different structures synthesized in ethylene glycol. • Hematites with fibrous- and plate-like morphologies obtained from green rusts. • Prominent morphology effect of hematites evidenced in catalyzed NO reduction with CO. • Structure–activity relationships established.
  • loading
  • [1]
    V.I. Parvulescu, P. Grange, B. Delmon, Catal. Today, 1998, 46, 233-316.
    [2]
    S. Roy, M.S. Hegde, G. Madras, Appl. Energy, 2009, 86, 2283-2297.
    [3]
    Z. Gholami, G. Luo, F. Gholami, F. Yang, Catal. Rev., 2020, 1-52.
    [4]
    X. Cheng, X.T. Bi, Particuology, 2014, 16, 1-18.
    [5]
    L. Han, S. Cai, M. Gao, J.-y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Chem. Rev., 2019, 119, 10916-10976.
    [6]
    N.W. Cant, I.O.Y. Liu, Catal. Today, 2000, 63, 133-146.
    [7]
    R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B Environ., 2002, 39, 283-303.
    [8]
    P. Granger, V.I. Parvulescu, Chem. Rev., 2011, 111, 3155-3207.
    [9]
    R. Mrad, A. Aissat, R. Cousin, D. Courcot, S. Siffert, Appl. Catal. A Gen., 2015, 504, 542-548.
    [10]
    J. Xu, Y. Qin, H. Wang, F. Guo, J. Xie, New J. Chem., 2020, 44, 817-831.
    [11]
    Z. Liu, J. Li, S.I. Woo, Energy Environ. Sci., 2012, 5, 8799-8814.
    [12]
    Z. Hu, Industrial and Engineering Chemistry Research, R.T. Yang, Ind. Eng. Chem. Res., 2019, 58, 10140-10153.
    [13]
    H.-S. Kim, S. Kasipandi, J. Kim, S.-H. Kang, J.-H. Kim, J.-H. Ryu, J.-W. Bae, Catalysts, 2020, 10, 52.
    [14]
    N.O. Popovych, S.O. Soloviev, S.M. Orlyk, Theor. Exp. Chem., 2016, 52, 133-151.
    [15]
    P.I. Kyriienko, Front. Chem. Sci. Eng., 2020, 14, 471-491.
    [16]
    M. Kacimi, M. Ziyad, L.F. Liotta, Catal. Today, 2015, 241, 151-158.
    [17]
    A. Srinivasan, C. Depcik, Catal. Rev. Sci. Eng., 2010, 52, 462-493.
    [18]
    L. Dong, B. Zhang, C. Tang, B. Li, L. Zhou, F. Gong, B. Sun, F. Gao, L. Dong, Y. Chen, Catal. Sci. Technol., 2014, 4, 482-493.
    [19]
    Y. Xiong, X. Yao, C. Tang, L. Zhang, Y. Cao, Y. Deng, F. Gao, L. Dong, Catal. Sci. Tech., 2014, 4, 4416-4425.
    [20]
    Q. Yu, X. Yao, H. Zhang, F. Gao, L. Dong, Appl. Catal. A Gen., 2012, 423-424, 42-51.
    [21]
    X. Yao, C. Tang, Z. Ji, Y. Dai, Y. Cao, F. Gao, L. Dong, Y. Chen, Catal. Sci. Tech., 2013, 3, 688-698.
    [22]
    X. Yao, Y. Xiong, W. Zou, L. Zhang, S. Wu, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L. Dong, Y. Chen, Appl. Catal. B Environ., 2014, 144, 152-165.
    [23]
    C. Sun, Y. Tang, F. Gao, J. Sun, K. Ma, C. Tang, L. Dong, Phys. Chem. Chem. Phys., 2015, 17, 15996-16006.
    [24]
    X. Cheng, X. Zhang, D. Su, Z. Wang, J. Chang, C. Ma, Appl. Catal. B Environ., 2018, 239, 485-501.
    [25]
    L.J. France, W. Li, Y. Zhang, W. Mu, Z. Chen, J. Shi, Q. Zeng, X. Li, Appl. Catal. B Environ., 2020, 269, 118822.
    [26]
    Y. Song, T. Wang, L. Cheng, C. Li, H. Wang, X. Wang, Can. J. Chem. Eng., 2019, 97, 2015-2020.
    [27]
    C.A. Roberts, D. Prieto-Centurion, Y. Nagai, Y.F. Nishimura, R.D. Desautels, J. van Lierop, P.T. Fanson, J.M. Notestein, J. Phys. Chem. C, 2015, 119, 4224-4234.
    [28]
    B.V. Reddy, S.N. Khanna, Phys. Rev. Lett., 2004, 93, 068301.
    [29]
    V.D.B.C. Dasireddy, B. Likozar, Chem. Eng. J., 2017, 326, 886-900.
    [30]
    X. Shi, B. Chu, F. Wang, X. Wei, L. Teng, M. Fan, B. Li, L. Dong, L. Dong, ACS Appl. Mater. Interfaces, 2018, 10, 40509-40522.
    [31]
    M.S. Souza, R.S. Araujo, A.C. Oliveira, Environ. Sci. Pollut. Res., 2020, 27, 30649-30660.
    [32]
    X. Du, T.-L. Yao, Q. Wei, H. Zhang, Y. Huang, Chem. Asian J., 2019, 14, 2966-2978.
    [33]
    J. Li, S. Wang, L. Zhou, G. Luo, F. Wei, Chem. Eng. J., 2014, 255, 126-133.
    [34]
    W.F. Shangguan, Y. Teraoka, S. Kagawa, Appl. Catal. B Environ., 1996, 8, 217-227.
    [35]
    H. Liu, L. Liu, L. Wei, B. Chu, Z. Qin, G. Jin, Z. Tong, L. Dong, B. Li, Fuel, 2020, 272, 117738.
    [36]
    L. Wang, X. Cheng, Z. Wang, C. Ma, Y. Qin, Appl. Catal. B Environ., 2017, 201, 636-651.
    [37]
    L. Wang, X. Cheng, Z. Wang, R. Sun, G. Zhao, T. Feng, C. Ma, Energy Fuels, 2019, 33, 11688-11704.
    [38]
    K. Ueda, C.A. Ang, Y. Ito, J. Ohyama, A. Satsuma, Catal. Sci. Tech., 2016, 6, 5797-5800.
    [39]
    K. Ueda, J. Ohyama, K. Sawabe, A. Satsuma, Chem. Eur. J., 2019, 25, 13964-13971.
    [40]
    R. M. Cornell, U. Schwertmann, (2003). The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Weinheim: Wiley-VCH GmbH& Co. KGaA.
    [41]
    X. Wei, B. Shao, Y. Zhou, Y. Li, C. Jin, J. Liu, W. Shen, Angew. Chem. Int. Ed., 2018, 57, 11289-11293.
    [42]
    R. Schlogl, Angew. Chem. Int. Ed., 2015, 54, 3465-3520.
    [43]
    Z. Sun, X. Feng, W. Hou, Nanotechnology, 2007, 18, 455607.
    [44]
    Y. Piao, J. Kim, H.B. Na, D. Kim, J.S. Baek, M.K. Ko, J.H. Lee, M. Shokouhimehr, T. Hyeon, Nat. Mater., 2008, 7, 242-247.
    [45]
    K. Woo, H.J. Lee, J.P. Ahn, Y.S. Park, Adv. Mater., 2003, 15, 1761-1764.
    [46]
    X. Mou, Y. Li, B. Zhang, L. Yao, X. Wei, D.S. Su, W. Shen, Eur. J. Inorg. Chem., 2012, 2012, 2684-2690.
    [47]
    S.Y. Lian, H.T. Li, X.D. He, Z.H. Kang, Y. Liu, S.T. Lee, J. Solid State Chem., 2012, 185, 117-123.
    [48]
    K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Nat. Commun., 2017, 8, 14264.
    [49]
    R. Aissa, M. Francois, C. Ruby, F. Fauth, G. Medjahdi, M. Abdelmoula, J. Genin, J. Phys. Chem. Solids, 2006, 67, 1016-1019.
    [50]
    H. Antony, L. Legrand, A. Chausse, Electrochim. Acta, 2008, 53, 7146-7156.
    [51]
    P. Lyu, M. Ertl, C.J. Heard, L. Grajciar, A.V. Radha, T. Martin, J. Breu, P. Nachtigall, J. Phys. Chem. C, 2019, 123, 25157-25165.
    [52]
    D.R. D.a. A.L. M. J.D. Bernal, Clay Miner. Bull., 1959, 15.
    [53]
    L. Fang, R. Liu, L. Xu, J. Li, L.-Z. Huang, F. Li, Environ. Sci.: Nano, 2019, 6, 970-980.
    [54]
    C. Ruby, M. Usman, S. Naille, K. Hanna, C. Carteret, M. Mullet, M. Francois, M. Abdelmoula, Appl. Clay Sci., 2010, 48, 195-202.
    [55]
    D. Peak, R.G. Ford, D.L. Sparks, J. Colloid Interface Sci., 1999, 218, 289-299.
    [56]
    Y.-C. Guo, C. Cai, Y.-H. Zhang, AIP Adv., 2018, 8, 055308.
    [57]
    C. Ruby, A. Gehin, M. Abdelmoula, J.-M.R. Genin, J.-P. Jolivet, Solid State Sci., 2003, 5, 1055-1062.
    [58]
    F. Bocher, Solid State Sci., 2004, 6, 117-124.
    [59]
    R. Nagarajan, P. Gupta, P. Singh, P. Chakraborty, Dalton Trans., 2016, 45, 17508-17520.
    [60]
    V. Lair, H. Antony, L. Legrand, A. Chausse, Corros. Sci., 2006, 48, 2050-2063.
    [61]
    A. Pineau, N. Kanari, I. Gaballah, Thermochim. Acta, 2006, 447, 89-100.
    [62]
    M. Bouraada, M. Ouali, L. De Menorval, J. Saudi Chem. Soc., 2012, 286.
    [63]
    H. Randall, R. Doepper, A. Renken, Appl. Catal. B Environ., 1998, 17, 357-369.
    [64]
    T. Ruhle, O. Timpe, N. Pfander, R. Schlogl, Angew. Chem. Int. Ed., 2000, 39, 4379-4382.
    [65]
    W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, W. Maniukiewicz, Appl. Catal. A Gen., 2007, 326, 17-27.
    [66]
    K. Otto, M. Shelef, J. Catal., 1970, 18, 184-192.
    [67]
    G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal., 1995, 157, 523-535.
    [68]
    A. Zecchina, D. Scarano, A. Reller, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2327-2333.
    [69]
    L. Schottner, A. Nefedov, C. Yang, S. Heissler, Y. Wang, C. Woll, Front. Chem., 2019, 7, 451.
    [70]
    R. Ovcharenko, E. Voloshina, J. Sauer, Phys. Chem. Chem. Phys., 2016, 18, 25560-25568.
    [71]
    Y. Wei, A. Liao, L. Wang, X. Wang, D. Wang, Y. Zhou, Z. Zou, J. Nanomater., 2020, 2020, 1-7.
    [72]
    X. Yao, F. Gao, Q. Yu, L. Qi, C. Tang, L. Dong, Y. Chen, Catal. Sci. Tech., 2013, 3, 1355-1366.
    [73]
    W. Zou, L. Liu, L. Zhang, L. Li, Y. Cao, X. Wang, C. Tang, F. Gao, L. Dong, Appl. Catal. A Gen., 2015, 505, 334-343.
    [74]
    C. Deng, B. Li, L. Dong, F. Zhang, M. Fan, G. Jin, J. Gao, L. Gao, F. Zhang, X. Zhou, Phys. Chem. Chem. Phys., 2015, 17, 16092-16109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return