Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Sijian Li, Luhua Shao, Zhenfei Yang, Shu Cheng, Cong Yang, Yutang Liu, Xinnian Xia. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation. Green Energy&Environment, 2022, 7(2): 246-256. doi: 10.1016/j.gee.2020.09.005
Citation: Sijian Li, Luhua Shao, Zhenfei Yang, Shu Cheng, Cong Yang, Yutang Liu, Xinnian Xia. Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation. Green Energy&Environment, 2022, 7(2): 246-256. doi: 10.1016/j.gee.2020.09.005

Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation

doi: 10.1016/j.gee.2020.09.005
  • It is highly demanded to steer the charge flow in semiconductor for efficient photocatalytic environmental remediation. Herein, we designed an interfacial contact Ti3C2 MXene/ZnIn2S4 nanosheets (TC/ZISNS) Schottky heterostructure which could greatly enhance photogenerated charge separation of ZnIn2S4 (ZIS). Through TEM and XPS measurement, the strong interface coupling between 2D ZnIn2S4 nanosheets and 2D Ti3C2 MXene were explained, and the formation of Schottky heterostructure was demonstrated by electrochemical method. To investigate the photocatalytic activity of as-prepared samples, the photocatalytic reduction of Cr(VI) and photocatalytic oxidation degradation tetracycline hydrochloride (TC-H) experiments were carried out. The results showed that the Schottky catalyst (10%-TC/ZISNS) possessed the optimum photocatalytic efficiency. Especially, the apparent rate constant of Cr(VI) reduction with 10%-TC/ZISNS was 3.9 times than that of pure ZIS. The photocatalytic performance of 10%-TC/ZISNS toward degradation rate of TC-H was 1.8 times than that of pure ZIS. Finally, a possible mechanism for great enhancement of visible-light driven photocatalytic activity in the TC/ZISNS system was provided. On the whole, this work provided a new insight on 2D/2D contact Schottky heterostructure for enhancing photocatalytic activity.

     

  • loading
  • [1]
    M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62(2018) 1-25.
    [2]
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Crit. Rev. Environ. Sci. Technol. 48(2018) 806-857.
    [3]
    Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Sci. Rep. 6(2016) 19221.
    [4]
    Z. Zhang, Y. Huang, K. Liu, L. Guo, Q. Yuan, B. Dong, Adv. Mater. 27(2015) 5906-5914.
    [5]
    Y. Shi, B. Zhang, Chem. Soc. Rev. 45(2016) 1529-1541.
    [6]
    L.-L. Long, J.-J. Chen, X. Zhang, A.-Y. Zhang, Y.-X. Huang, Q. Rong, H.-Q. Yu, NPG Asia Mater. 8(2016) e263-e263.
    [7]
    J.S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, X. Xu, Nano Lett. 17(2017) 638-643.
    [8]
    D.S. Koda, F. Bechstedt, M. Marques, L.K. Teles, J. Phys. Chem. C 120(2016) 10895-10908.
    [9]
    C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 27(2017) 1604328.
    [10]
    G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Angew. Chem. Int. Ed. 59(2020) 8255-8261.
    [11]
    M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516(2014) 78-81.
    [12]
    O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall'agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4(2013) 1716.
    [13]
    A. Lipatov, H. Lu, M. Alhabeb, Sci. Adv. 4(2018) eaat0491.
    [14]
    R.M. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P. Louis Taber, Science 341(2013) 1502-1505.
    [15]
    G. Gao, A.P. O’mullane, A. Du, ACS Catal. 7(2016) 494-500.
    [16]
    S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano 10(2016) 3334-3341.
    [17]
    S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, ACS Nano 12(2018) 986-993.
    [18]
    Z. Wang, J. Xuan, Z. Zhao, Q. Li, F. Geng, ACS Nano 11(2017) 11559-11565.
    [19]
    M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, ACS Nano 12(2018) 3578-3586.
    [20]
    T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu, S. Luo, Appl. Catal. B Environ. 239(2018) 545-554.
    [21]
    X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Appl. Catal. B Environ. 237(2018) 43-49.
    [22]
    M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Nano Energy 44(2018) 181-190.
    [23]
    J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang, X. Fan, Appl. Catal. B Environ. 241(2019) 89-94.
    [24]
    Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, Appl. Catal. B Environ. 246(2019) 12-20.
    [25]
    X.-L. Li, X.-J. Wang, J.-Y. Zhu, Y.-P. Li, J. Zhao, F.-T. Li, Chem. Eng. J. 353(2018) 15-24.
    [26]
    G. Zhang, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Appl. Catal. B Environ. 232(2018) 164-174.
    [27]
    Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang, C. Zhi, Adv. Mater. 29(2017) 1604847.
    [28]
    K. Zhang, S. Qian, W. Kim, J.K. Kim, X. Sheng, J.Y. Lee, J.H. Park, Nano Energy 34(2017) 481-490.
    [29]
    Y. Lei, J. Hou, F. Wang, X. Ma, Z. Jin, J. Xu, S. Min, Appl. Surf. Sci. 420(2017) 456-464.
    [30]
    B. Chai, M. Xu, J. Yan, Appl. Surf. Sci. 430(2018) 523-530.
    [31]
    B. Chai, M. Xu, J. Yan, Z. Ren, Appl. Surf. Sci. 430(2018) 523-530.
    [32]
    Y. Chen, R. Huang, D. Chen, Y. Wang, W. Liu, X. Li, Z. Li, ACS Appl. Mater. Interfaces 4(2012) 2273-2279.
    [33]
    G. Yang, D. Chen, H. Ding, J. Feng, J.Z. Zhang, Y. Zhu, S. Hamid, D.W. Bahnemann, Appl. Catal. B Environ. 219(2017) 611-618.
    [34]
    S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28(2018) 1800136.
    [35]
    J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Nat. Commun. 8(2017) 13907.
    [36]
    Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang, K. Zhao, L. Zhou, L. Moskaleva, S. Guo, Angew. Chem. Int. Ed. 57(2018) 496-500.
    [37]
    T. Ma, J. Cao, M. Jaroniec, S. Qiao, Angew. Chem. Int. Ed. 55(2016) 1138-1142.
    [38]
    Y. Lu, X. Zhang, Y. Chu, H. Yu, M. Huo, J. Qu, J.C. Crittenden, H. Huo, X. Yuan, Appl. Catal. B Environ. 224(2018) 239-248.
    [39]
    S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrochem. Commun. 13(2011) 861-864.
    [40]
    J. Yang, J. Wang, X. Li, D. Wang, H. Song, Catal. Sci. Technol. 6(2016) 4525-4534.
    [41]
    C. Zhang, L. Ai, J. Jiang, Ind. Eng. Chem. Res. 54(2014) 153-163.
    [42]
    Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, ACS Appl. Mater. Interfaces 7(2015) 16850-16856.
    [43]
    Z. Li, Y. Wu, G. Lu, Appl. Catal. B Environ. 188(2016) 56-64.
    [44]
    T. Cai, Y. Liu, L. Wang, S. Zhang, Y. Zeng, J. Yuan, J. Ma, W. Dong, C. Liu, S. Luo, Appl. Catal. B Environ. 208(2017) 1-13.
    [45]
    F. Zhao, Z. Yang, Z. Wei, R. Spinney, M. Sillanpää, J. Tang, M. Tam, R. Xiao, Chem. Eng. J. 388(2020) 124307.
    [46]
    C. Cheng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, J. Hazard. Mater. 391(2020) 122205.
    [47]
    F. Zhao, Y. Liu, S.B. Hammouda, B. Doshi, N. Guijarro, X. Min, C.-J. Tang, M. Sillanpää, K. Sivula, S. Wang, Appl. Catal. B Environ. 272(2020) 119033.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (315) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return