Haoxuan Zhang, Jingyu Wang, Qilin Cheng, Petr Saha, Hao Jiang. Highly surface electron-deficient Co9S8 nanoarrays for enhanced oxygen evolution. Green Energy&Environment, 2020, 5(4): 492-498. doi: 10.1016/j.gee.2020.07.010
Citation: Haoxuan Zhang, Jingyu Wang, Qilin Cheng, Petr Saha, Hao Jiang. Highly surface electron-deficient Co9S8 nanoarrays for enhanced oxygen evolution. Green Energy&Environment, 2020, 5(4): 492-498. doi: 10.1016/j.gee.2020.07.010

Highly surface electron-deficient Co9S8 nanoarrays for enhanced oxygen evolution

doi: 10.1016/j.gee.2020.07.010
  • Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction (OER). Herein, we demonstrate a “poor sulfur” route to synthesize surface electron-deficient Co9S8 nanoarrays, where the binding energy (BE) of Co metal center is considerably higher than all reported Co9S8-based electrocatalysts. The resulting Co9S8 electrocatalysts only require the overpotentials (η) of 265 and 326 mV at 10 and 100 mA cm−2 with a low Tafel slope of 56 mV dec−1 and a 60 h-lasting stability in alkaline media. The OER kinetics are greatly expedited with a low reaction activation energy of 27.9 kJ mol−1 as well as abundant OOH∗ key intermediates (24%), thus exhibiting excellent catalytic performances. The surface electron-deficient engineering gives an available strategy to improve the catalytic activity of other advanced non-noble electrocatalysts.

     

  • loading
  • [1]
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355 (2017) eaad4998.
    [2]
    Y. Peng, S. Chen, Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview, Green Energy & Environ., 3 (2018) 335-351.
    [3]
    Q.C. Xu, H. Jiang, H.X. Zhang, Y.J. Hu, C.Z. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2Ni3S2 nanoforests for efficient water splitting, Appl. Catal., B, 242 (2019) 60-66.
    [4]
    H. Zhang, H. Jiang, Y. Hu, H. Jiang, C. Li, Integrated Ni-P-S nanosheets array as superior electrocatalysts for hydrogen generation, Green Energy & Environ., 2 (2017) 112-118.
    [5]
    S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction, Angew. Chem., Int. Ed., 57 (2018) 2672-2676.
    [6]
    H.S. Oh, H.N. Nong, T. Reier, A. Bergmann, M. Gliech, J.F. de Araujo, E. Willinger, R. Schlogl, D. Teschner, P. Strasser, Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction, J. Am. Chem. Soc., 138 (2016) 12552-12563.
    [7]
    S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability, Catal. Today, 262 (2016) 170-180.
    [8]
    W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting, Acc. Chem. Res., 53 (2020) 1111-1123.
    [9]
    L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev., 49 (2020) 3072-3106.
    [10]
    S. Peng, F. Gong, L. Li, D. Yu, D. Ji, T. Zhang, Z. Hu, Z. Zhang, S. Chou, Y. Du, S. Ramakrishna, Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis, J. Am. Chem. Soc., 140 (2018) 13644-13653.
    [11]
    Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction, Adv. Funct. Mater., 28 (2018) 1703363.
    [12]
    C. Li, Z. Luo, T. Wang, J. Gong, Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting, Adv. Mater., 30 (2018) 17007502
    [13]
    H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core-Shell System Toward Synergetic Electrocatalytic Water Splitting, Adv. Mater., 27 (2015) 4752-4759.
    [14]
    M. Al-Mamun, Y. Wang, P. Liu, Y.L. Zhong, H. Yin, X. Su, H. Zhang, H. Yang, D. Wang, Z. Tang, H. Zhao, One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction, J. Mater. Chem. A, 4 (2016) 18314-18321.
    [15]
    D. Xiong, Q. Zhang, S.M. Thalluri, J. Xu, W. Li, X. Fu, L. Liu, One-Step Fabrication of Monolithic Electrodes Comprising Co9S8 Particles Supported on Cobalt Foam for Efficient and Durable Oxygen Evolution Reaction, Chem-Eur. J., 23 (2017) 8749-8755.
    [16]
    H. Qian, J. Tang, Z. Wang, J. Kim, J.H. Kim, S.M. Alshehri, E. Yanmaz, X. Wang, Y. Yamauchi, Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction, Chem-Eur. J., 22 (2016) 18259-18264.
    [17]
    J. Yang, G.X. Zhu, Y.J. Liu, J.X. Xia, Z.Y. Ji, X.P. Shen, S.K. Wu, Fe3O4-Decorated Co9S8 Nanoparticles In Situ Grown on Reduced Graphene Oxide: A New and Efficient Electrocatalyst for Oxygen Evolution Reaction, Adv. Funct. Mater. 26 (2016) 4712-4721.
    [18]
    S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Hollow TiO2@Co9S8 Core-Branch Arrays as Bifunctional Electrocatalysts for Efficient Oxygen/Hydrogen Production, Adv. Sci. 5 (2018) 1700772
    [19]
    W. Li, Y. Li, H. Wang, Y. Cao, H. Yu, F. Peng, Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions, Electrochim.Acta, 265 (2018) 32-40.
    [20]
    P.F. Yin, L.L. Sun, Y.L. Gao, S.Y. Wang, Preparation and characterization of Co9S8 nanocrystalline and nanorods, B. Mater. Sci., 31 (2008) 593-596.
    [21]
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257 (2011) 2717-2730.
    [22]
    H. Zhang, B. Chen, H. Jiang, X. Duan, Y. Zhu, C. Li, Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes, Nanoscale, 10 (2018) 12991-12996.
    [23]
    H. Vrubel, D. Merki, X. Hu, Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy Environ. Sci., 5 (2012) 6136-6144.
    [24]
    T. Yokoyama, A. Imanishi, S. Terada, H. Namba, Y. Kitajima, T. Ohta, Electronic properties of SO2 adsorbed on Ni(100) studied by UPS and O K-edge NEXAFS, Surf. Sci., 334 (1995) 88-94.
    [25]
    Y. Li, W. Zhou, J. Dong, Y. Luo, P. An, J. Liu, X. Wu, G. Xu, H. Zhang, J. Zhang, Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries, Nanoscale, 10 (2018) 2649-2657.
    [26]
    Z. Xiao, G. Xiao, M. Shi, Y. Zhu, Homogeneously Dispersed Co9S8 Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors, ACS Appl. Mater. Interfaces, 10 (2018) 16436-16448.
    [27]
    H. Zhang, H. Jiang, Y. Hu, P. Saha, C. Li, Mo-Triggered amorphous Ni3S2 nanosheets as efficient and durable electrocatalysts for water splitting, Mater. Chem. Front., 2 (2018) 1462-1466.
    [28]
    Y. Pi, N. Zhang, S. Guo, J. Guo, X. Huang, Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range, Nano Lett., 16 (2016) 4424-4430.
    [29]
    Y. Meng, W. Song, H. Huang, Z. Ren, S.Y. Chen, S.L. Suib, Structure-Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media, J. Am. Chem. Soc., 136 (2014) 11452-11464.
    [30]
    Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu, C. Li, In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries, Appl. Catal. B, 256 (2019) UNSP117893.
    [31]
    L. Li, H. Yang, J. Miao, L. Zhang, H.Y. Wang, Z. Zeng, W. Huang, X. Dong, B. Liu, Unraveling Oxygen Evolution Reaction on Carbon-Based Electrocatalysts: Effect of Oxygen Doping on Adsorption of Oxygenated Intermediates, ACS Energy Lett., 2 (2017) 294-300.
    [32]
    Y. Surendranath, M. Dinca, D.G. Nocera, Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts, J. Am. Chem. Soc., 131 (2009) 2615-2620.
    [33]
    L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction, Adv. Mater., 29 (2017) 1606793.
    [34]
    T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts, J. Phys. Chem. Lett., 5 (2014) 2370-2374.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (354) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return