Siwen Wang, Jiamin Wang, Hongliang Xin. Insights into electrochemical CO2 reduction on tin oxides from first-principles calculations. Green Energy&Environment, 2017, 2(2): 168-171. doi: 10.1016/j.gee.2017.02.005
Citation: Siwen Wang, Jiamin Wang, Hongliang Xin. Insights into electrochemical CO2 reduction on tin oxides from first-principles calculations. Green Energy&Environment, 2017, 2(2): 168-171. doi: 10.1016/j.gee.2017.02.005

Insights into electrochemical CO2 reduction on tin oxides from first-principles calculations

doi: 10.1016/j.gee.2017.02.005
  • Density functional theory calculations were used to unravel the mechanism of CO2 electroreduction on SnO surfaces. Under highly reducing conditions (< −0.6 V vs. RHE), the SnO(101) surface with oxygen vacancies is likely the active phase for CO2 reduction. We showed that the proton-electron transfer to adsorbed *CO2 forming *OCHO, a key intermediate for producing HCOOH, is energetically more favorable than the formation of *COOH, justifying the selectivity trends observed on Sn-based electrocatalysts. With linear scaling relations, we propose the free formation energy of *CO2 at the oxygen vacancy as the reactivity descriptor. By engineering the strain of the SnO(101) surface, the selectivity towards HCOOH can be further optimized at reduced overpotentials.

     

  • loading
  • [1]
    N.S.Lewis, D.G.Nocera PNAS, 103 (2006),pp. 15729-15735
    [2]
    Y.Hori, A.Murata, R.Takahashi, et al. J. Am. Chem. Soc., 109 (1987),pp. 5022-5023
    [3]
    Y.Hori, A.Murata, R.Takahashi J. Chem. Soc. Faraday Trans., 1 (85),pp. 2309-2326
    [4]
    Y.Hori
    [5]
    Y.Chen, M.W.Kanan J. Am. Chem. Soc., 134 (2012),pp. 1986-1989
    [6]
    D.Raciti, K.J.Livi, C.Wang Nano Lett., 15 (2015),pp. 6829-6835
    [7]
    X.Ma, Z.Li, L.E.K.Achenie, et al. J. Phys. Chem. Lett., 6 (2015),pp. 3528-3533
    [8]
    Q.Lu, J.Rosen, Y.Zhou, et al. Nat. Commun., 5 (2014),p. 3242
    [9]
    J.Rosen, G.S.Hutchings, Q.Lu, et al. ACS Catal., 5 (2015),pp. 4293-4299
    [10]
    T.Hatsukade, K.P.Kuhl, E.R.Cave, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 13814-13819
    [11]
    D.T.Whipple, P.J.A.Kenis J. Phys. Chem. Lett., 1 (2010),pp. 3451-3458
    [12]
    C.Cui, J.Han, X.Zhu, et al. J. Catal., 343 (2016),pp. 257-265
    [13]
    A.Dutta, A.Kuzume, M.Rahaman, et al. ACS Catal., 5 (2015),pp. 7498-7502
    [14]
    J.Hutter, M.Iannuzzi, F.Schiffmann, et al. WIREs Comput. Mol. Sci., 4 (2014),pp. 15-25
    [15]
    J.P.Perdew J. Chem. Phys., 123 (2005),p. 62201
    [16]
    S.Grimme, J.Antony, S.Ehrlich, et al. J. Chem. Phys., 132 (2010),p. 154104
    [17]
    C.L.Pang, S.A.Haycock, H.Raza, et al. Phys. Rev. B, 62 (2000),pp. R7775-R7778
    [18]
    J.K.Nørskov, J.Rossmeisl, A.Logadottir, et al. J. Phys. Chem. B, 108 (2004),pp. 17886-17892
    [19]
    A.Jain, S.P.Ong, G.Hautier, et al. APL Mater., 1 (2013),p. 11002
    [20]
    NIST-JANAF
    [21]
    G.E.K.Branch J. Am. Chem. Soc., 37 (1915),pp. 2316-2326
    [22]
    M.Karamad, H.A.Hansen, J.Rossmeisl, et al. ACS Catal., 5 (2015),pp. 4075-4801
    [23]
    A.A.Peterson, F.Abild-Pedersen, F.Studt, et al. Energy Environ. Sci., 3 (2010),pp. 1311-1315
    [24]
    M.F.Baruch, J.E.Pander, J.L.White, et al. ACS Catal., 5 (2015),pp. 3148-3156
    [25]
    F.Abild-Pedersen, J.Greeley, F.Studt, et al. Phys. Rev. Lett., 99 (2007),pp. 16105-16114
    [26]
    G.Jones, F.Studt, F.Abild-Pedersen, et al. Chem. Eng. Sci., 66 (2011),pp. 6318-6323
    [27]
    W.Luc, C.Collins, S.Wang, et al. J. Am. Chem. Soc., 139 (2017),pp. 1885-1893
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return