Zhigang Chen, Jie Zeng, Jun Di, Dexiang Zhao, Mengxia Ji, Jiexiang Xia, Huaming Li. Facile microwave-assisted ionic liquid synthesis of sphere-like BiOBr hollow and porous nanostructures with enhanced photocatalytic performance. Green Energy&Environment, 2017, 2(2): 124-133. doi: 10.1016/j.gee.2017.01.005
Citation: Zhigang Chen, Jie Zeng, Jun Di, Dexiang Zhao, Mengxia Ji, Jiexiang Xia, Huaming Li. Facile microwave-assisted ionic liquid synthesis of sphere-like BiOBr hollow and porous nanostructures with enhanced photocatalytic performance. Green Energy&Environment, 2017, 2(2): 124-133. doi: 10.1016/j.gee.2017.01.005

Facile microwave-assisted ionic liquid synthesis of sphere-like BiOBr hollow and porous nanostructures with enhanced photocatalytic performance

doi: 10.1016/j.gee.2017.01.005
  • In this work, two kinds of self-assembled hierarchical BiOBr microcrystals were rapidly synthesized through a simple microwave-assisted route in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). These porous and hollow BiOBr microspheres were obtained via a facile solvothermal method with or without polyvinyl pyrrolidone (PVP), respectively. During the synthetic process, ionic liquid [C16mim]Br played as solvent, reactant and template at the same time. Moreover, the BiOBr hollow and porous microspheres exhibited outstanding photocatalytic activities for the degradation of rhodamine B (RhB) under visible light irradiation. A possible photocatalytic mechanism was also discussed in detail. It can be assumed that the higher photocatalytic activities of BiOBr porous microspheres materials could be ascribed to the novel structure, larger specific surface area, narrower band gap structure and smaller particle size.

     

  • loading
  • [1]
    H.Tong, S.X.Ouyang, Y.P.Bi, et al. Adv. Mater., 24 (2012),pp. 229-251
    [2]
    D.T.Yue, X.F.Qian, Y.X.Zhao Sci. Bull., 60 (2015),pp. 1791-1806
    [3]
    Y.F.Zhao, B.Zhao, J.J.Liu, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 4215-4219
    [4]
    Y.F.Zhao, X.D.Jia, G.I.N.Waterhouse, et al. Adv. Energy Mater., 6 (2016),p. 1501974
    [5]
    H.W.Huang, X.Han, X.W.Li, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 482-492
    [6]
    G.G.Briand, N.Burford Chem. Rev., 99 (1999),pp. 2601-2657
    [7]
    M.Shang, W.Z.Wang, L.Zhang J. Hazard. Mater., 167 (2009),pp. 803-809
    [8]
    J.Di, J.X.Xia, M.X.Ji, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 20111-20123
    [9]
    J.Di, J.X.Xia, M.X.Ji, et al. J. Mater. Chem. A, 4 (2016),pp. 5051-5061
    [10]
    J.L.Wang, Y.Yu, L.Z.Zhang Appl. Catal. B Environ., 136 (2013),pp. 112-121
    [11]
    S.Shenawi-Khalil, V.Uvarov, S.Fronton, et al. J. Phys. Chem. C, 116 (2012),pp. 11004-11012
    [12]
    J.Jiang, K.Zhao, X.Y.Xiao, et al. J. Am. Chem. Soc., 134 (2012),pp. 4473-4476
    [13]
    D.J.Mao, X.M.Lü, Z.F.Jiang, et al. Mater. Lett., 118 (2014),pp. 154-157
    [14]
    H.Deng, J.W.Wang, Q.Peng, et al. Chem.-Eur. J., 11 (2005),pp. 6519-6524
    [15]
    J.Di, J.X.Xia, Y.P.Ge, et al. Dalton Trans., 43 (2014),pp. 15429-15438
    [16]
    J.Zhang, J.X.Xia, S.Yin, et al. Colloids Surf. A Physicochem. Eng. Asp., 420 (2013),pp. 89-95
    [17]
    J.Li, Y.Yu, L.Z.Zhang Nanoscale, 6 (2014),pp. 8473-8488
    [18]
    J.Jiang, X.Zhang, P.B.Sun, et al. J. Phys. Chem. C, 115 (2011),pp. 20555-20564
    [19]
    J.Jiang, L.Z.Zhang, H.Li, et al. Nanoscale, 5 (2013),pp. 10573-10581
    [20]
    L.Q.Ye, Y.R.Su, X.L.Jin, et al. Environ. Sci. Nano, 1 (2014),pp. 90-112
    [21]
    Y.F.Zhao, G.B.Chen, T.Bian, et al. Adv. Mater, 27 (2015),pp. 7824-7831
    [22]
    C.H.Deng, H.M.Guan Mater. Lett., 107 (2013),pp. 119-122
    [23]
    J.Li, L.Z.Zhang, Y.J.Li, et al. Nanoscale, 6 (2014),pp. 167-171
    [24]
    J.Di, J.X.Xia, S.Yin, et al. J. Mater. Chem. A, 2 (2014),pp. 5340-5351
    [25]
    Y.H.Xiang, P.Ju, Y.Wang, et al. Chem. Eng. J., 288 (2016),pp. 264-275
    [26]
    D.Zhang, J.Li, Q.G.Wang, et al. J. Mater. Chem. A, 1 (2013),pp. 8622-8629
    [27]
    Y.C.Feng, L.Li, J.M.Li, et al. J. Hazard. Mater., 192 (2011),pp. 538-544
    [28]
    Y.X.Guo, H.W.Huang, Y.He, et al. Nanoscale, 7 (2015),pp. 11702-11711
    [29]
    Y.J.Zhu, F.Chen Chem. Rev., 114 (2014),pp. 6462-6555
    [30]
    [31]
    R.S.Varma, V.V.Namboodiri Chem. Commun., 7 (2001),pp. 643-644
    [32]
    R.S.Varma, V.V.Namboodiri Pure Appl. Chem., 73 (2001),pp. 1309-1313
    [33]
    A.Rehman, X.Q.Zeng Acc. Chem. Res., 45 (2012),pp. 1667-1677
    [34]
    G.Chatel, J.F.B.Pereira, V.Debbeti, et al. Green Chem., 16 (2014),pp. 2051-2083
    [35]
    J.Di, J.X.Xia, S.Yin, et al. RSC Adv., 3 (2013),pp. 19624-19631
    [36]
    J.Dupont, J.D.Scholten Chem. Soc. Rev., 39 (2010),pp. 1780-1804
    [37]
    J.X.Xia, Y.Y.Ge, J.Di, et al. J. Colloid Interface Sci., 473 (2016),pp. 112-119
    [38]
    Z.G.Chen, H.J.Ma, J.X.Xia, et al. Ceram. Int., 42 (2016),pp. 8997-9003
    [39]
    J.A.Dahl, B.L.S.Maddux, J.E.Hutchison Chem. Rev., 107 (2007),pp. 2228-2269
    [40]
    J.P.Wu, N.Li, L.Q.Zheng, et al. Langmuir, 24 (2008),pp. 9314-9322
    [41]
    J.Łuczak, M.Paszkiewicz, A.Krukowska, et al. Adv. Colloid Interface Sci., 227 (2016),pp. 1-52
    [42]
    R.Martínez-Palou Mol. Divers., 14 (2010),pp. 3-25
    [43]
    F.T.Li, X.J.Wang, Y.Zhao, et al. Appl. Catal. B Environ., 144 (2014),pp. 442-453
    [44]
    P.S.Campbell, C.Lorbeer, J.Cybinska, et al. Adv. Funct. Mater., 23 (2013),pp. 2924-2931
    [45]
    M.Q.He, D.X.Zhao, J.X.Xia, et al. Mater. Sci. Semicond. Process., 32 (2015),pp. 117-124
    [46]
    G.B.Ji, Y.Shi, L.J.Pan, et al. J. Alloys Compd., 509 (2011),pp. 6015-6020
    [47]
    G.R.Chaudhary, P.Bansal, S.K.Mehta Chem. Eng. J. (2014),pp. 217-224
    [48]
    J.X.Xia, S.Yin, H.M.Li, et al. Langmuir, 27 (2011),pp. 1200-1206
    [49]
    L.J.Zhao, X.C.Zhang, C.M.Fan, et al. Phys. B Condens. Matter., 407 (2012),pp. 3364-3370
    [50]
    J.Di, J.X.Xia, M.X.Ji, et al. Appl. Catal. B Environ., 183 (2016),pp. 254-262
    [51]
    I.Ardelean, S.Cora, D.Rusu Phys. B Condens. Matter., 403 (2008),pp. 3682-3685
    [52]
    K.Nakamoto
    [53]
    J.X.Xia, S.Yin, H.M.Li, et al. Dalton Trans., 40 (2011),pp. 5249-5258
    [54]
    H.F.Cheng, B.B.Huang, Z.Y.Wang, et al. Chem. - Eur. J., 17 (2011),pp. 8039-8043
    [55]
    B.M.Pirzada, O.Mehraj, N.A.Mir, et al. New J. Chem., 39 (2015),pp. 7153-7163
    [56]
    L.Shang, B.A.Tong, H.J.Yu, et al. Adv. Energy Mater., 6 (2016),p. 1501241
    [57]
    J.X.Xia, J.Di, S.Yin, et al. Ceram. Int., 40 (2014),pp. 4607-4616
    [58]
    J.X.Xia, S.Yin, H.Li, et al. Colloids Surf. Physicochem. Eng. Asp., 387 (2011),pp. 23-28
    [59]
    Q.L.Yuan, Y.Zhang, H.Y.Yin, et al. J. Exp. Nanosci., 11 (2016),pp. 359-369
    [60]
    Y.N.Huo, J.Zhang, M.Miao, et al. Appl. Catal. B Environ., 111 (2012),pp. 334-341
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return